GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases.
نویسندگان
چکیده
Formation of the mitotic cleavage furrow is dependent upon both microtubules and activity of the small GTPase RhoA. GEF-H1 is a microtubule-regulated exchange factor that couples microtubule dynamics to RhoA activation. GEF-H1 localized to the mitotic apparatus in HeLa cells, particularly at the tips of cortical microtubules and the midbody, and perturbation of GEF-H1 function induced mitotic aberrations, including asymmetric furrowing, membrane blebbing, and impaired cytokinesis. The mitotic kinases Aurora A/B and Cdk1/Cyclin B phosphorylate GEF-H1, thereby inhibiting GEF-H1 catalytic activity. Dephosphorylation of GEF-H1 occurs just prior to cytokinesis, accompanied by GEF-H1-dependent GTP loading on RhoA. Using a live cell biosensor, we demonstrate distinct roles for GEF-H1 and Ect2 in regulating Rho activity in the cleavage furrow, with GEF-H1 catalyzing Rho activation in response to Ect2-dependent localization and initiation of cell cleavage. Our results identify a GEF-H1-dependent mechanism to modulate localized RhoA activation during cytokinesis under the control of mitotic kinases.
منابع مشابه
Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge.
Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotid...
متن کاملGEF-H1 regulates cell migration via localized activation of RhoA at the leading edge
Cell migration involves the cooperative reorganization of the actin-and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotid...
متن کاملIdentification of a mitotic Rac-GEF, Trio, that counteracts MgcRacGAP function during cytokinesis
The Rho GTPases RhoA and Rac1 function as master regulators of cytokinesis by controlling the actomyosin cytoskeleton. RhoA and Rac1 have to be respectively activated and inactivated at the division plane for cytokinesis to occur properly. The inactivation of Rac1 at the cleavage furrow is controlled by MgcRacGAP. However, the guanine-nucleotide exchange factor (GEF) that activates Rac1 during ...
متن کاملCalpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1.
Crosstalk between microtubules and actin filaments is crucial for various cellular functions, including cell migration, spreading and cytokinesis. The Rac1 GTPase plays a key role in such crosstalk at the leading edge of migrating cells in order to promote lamellipodial formation. However, the mechanism underlying the link between microtubules and Rac1 activation remains unclear. Here, we show ...
متن کاملMicrotubules regulate GEF-H1 in response to extracellular matrix stiffness
Breast epithelial cells sense the stiffness of the extracellular matrix through Rho-mediated contractility. In turn, matrix stiffness regulates RhoA activity. However, the upstream signaling mechanisms are poorly defined. Here we demonstrate that the Rho exchange factor GEF-H1 mediates RhoA activation in response to extracellular matrix stiffness. We demonstrate the novel finding that microtubu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cell
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2007